Manipulation of Dirac cones in intercalated epitaxial graphene

نویسندگان

  • Minsung Kim
  • Michael C. Tringides
  • Matthew T. Hershberger
  • Shen Chen
  • Myron Hupalo
  • Patricia A. Thiel
  • Cai-Zhuang Wang
  • Kai-Ming Ho
چکیده

Graphene is an intriguing material in view of its unique Dirac quasi-particles, and the manipulation of its electronic structure is important in material design and applications. Here, we theoretically investigate the electronic band structure of epitaxial graphene on SiC with intercalation of rare earth metal ions (e.g., Yb and Dy) using first-principles calculations. The intercalation can be used to control the coupling of the constituent components (buffer layer, graphene, and substrate), resulting in strong modification of the graphene band structure. It is demonstrated that the metal-intercalated epitaxial graphene has tunable band structures by controlling the energies of Dirac cones as well as the linear and quadratic band dispersion depending on the intercalation layer and density. Therefore, the metal intercalation is a viable method to manipulate the electronic band structure of the epitaxial graphene, which can enhance the functional utility and controllability of the material.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly anisotropic Dirac cones in epitaxial graphene modulated by an island superlattice.

We present a new method to engineer the charge carrier mobility and its directional asymmetry in epitaxial graphene by using metal cluster superlattices self-assembled onto the moiré pattern formed by graphene on Ir(111). Angle-resolved photoemission spectroscopy reveals threefold symmetry in the band structure associated with strong renormalization of the electron group velocity close to the D...

متن کامل

Electronic structure of few-layer epitaxial graphene on Ru(0001).

The electronic structure of epitaxial monolayer, bilayer, and trilayer graphene on Ru(0001) was determined by selected-area angle-resolved photoelectron spectroscopy (micro-ARPES). Micro-ARPES band maps provide evidence for a strong electronic coupling between monolayer graphene and the adjacent metal, which causes the complete disruption of the graphene pi-bands near the Fermi energy. However,...

متن کامل

Electronic structures of an epitaxial graphene monolayer on SiC(0001) after gold intercalation: a first-principles study.

The atomic and electronic structures of an Au-intercalated graphene monolayer on the SiC(0001) surface were investigated using first-principles calculations. The unique Dirac cone of graphene near the K point reappeared as the monolayer was intercalated by Au atoms. Coherent interfaces were used to study the mismatch and the strain at the boundaries. Our calculations showed that the strain at t...

متن کامل

Unravelling the mechanisms of giant spin-orbit splitting in graphene on metals

Weak interaction between graphene and metals tends to preserve the graphene’s characteristic Dirac cones almost intact in the band structure. However, recently it has been shown in experiments that even in case of very weak graphene/substrate coupling the presence of a heavy 5d metal can induce giant spin-orbit splitting (SO) of Rashba type in the graphene’s π bands, although the intrinsic SO c...

متن کامل

First direct observation of a nearly ideal graphene band structure.

Angle-resolved photoemission and x-ray diffraction experiments show that multilayer epitaxial graphene grown on the SiC(0001) surface is a new form of carbon that is composed of effectively isolated graphene sheets. The unique rotational stacking of these films causes adjacent graphene layers to electronically decouple leading to a set of nearly independent linearly dispersing bands (Dirac cone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017